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Abstract
The success or otherwise of nanoscale devices hinges on a correct understanding
of the physical effects at this scale. Research in nanotechnology is
predominantly through either experimentation using electron and atomic force
microscopy or through large-scale computation using molecular dynamics
simulation. In this paper, we employ elementary mechanical principles and
classical modelling procedures to investigate the packing of C60 fullerene chains
inside a single-walled carbon nanotube by utilizing the Lennard–Jones potential
function and the continuum approximation. Such assemblies are often referred
to as nanopeapods. We examine both zigzag and spiral chain configurations
inside (10, 10), (16, 16) and (20, 20) carbon nanotubes and we obtain analytical
expressions in terms of hypergeometric functions for the potential energy for
such configurations. We find that for a (10, 10) tube, the C60 fullerene chain is
formed linearly along the tube axis. In the case of both (16, 16) and (20, 20)

tubes, both zigzag and spiral configurations are more clearly evident along the
tube. In particular, the resulting pattern obtained for the zigzag chain is entirely
consistent with a specific angular spacing for the spiral pattern.

PACS numbers: 02.30.Rz, 34.20.−b, 62.25.+g

1. Introduction

Although classical applied mathematical modelling has been widely used for solving many
wide-ranging problems, it has received less usage in the field of nanotechnology which
is dominated by experiments and molecular dynamics simulations. A significant outcome
obtained from the use of mathematical modelling is an improved insight and understanding
into the basic physical concepts of the problem. Recently, nanodevices and nanostructures
have received much attention scientifically due to their underlying unique physical properties
arising from the van der Waals interaction force and the large surface to volume ratio, which
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do not occur to the same extent at the micro-scale. However, there is a practical size limit
at which equipment can operate, and this leads to difficulties studying nano-scale objects.
As such, mathematical modelling techniques provide an alternative approach to investigate
the special properties. The aim of this paper is to exploit conventional applied mathematical
modelling and fundamental mechanical principles to describe the energy behaviour of certain
configurations of fullerenes inside carbon nanotubes, which are sometimes referred to as
nanopeapods. In particular, we examine the inter-atomic energy for both zigzag and spiral
chains of C60 fullerenes inside a single-walled carbon nanotube by utilizing the Lennard–Jones
potential function and the continuum approximation.

Nowadays, carbon nanostructures, such as C60 fullerenes, carbon nanotubes and
nanopeapods, are being examined as components in many potential applications [1]. One
particular proposed application is the use of carbon nanotubes as nanocarriers for drug delivery.
Single-walled carbon nanotubes filled with C60 fullerenes, commonly called nanopeapods,
have a unique morphology such that the space inside the tube can be considered as the
nano-container and the C60 molecules can be considered as the drug [2]. Nanopeapods
have been previously observed by Smith et al [3, 4], who use high-resolution transmission
electron microscopy to show that self-assembly of C60 fullerene chains occurs inside carbon
nanotubes. While the actual formation mechanisms of nanopeapods are unknown, a number
of studies propose that a C60 molecule is either being sucked in through the tube open ends
or being adsorbed through a large defect on the nanotube wall. By using molecular dynamics
simulations, Berber et al [5] claim that the encapsulation of C60 molecules either in an isolated
or bundled single-walled carbon nanotubes is most likely to occur through a large opening
in the tube wall. For bundled tubes, or rope, the result of Berber et al [5] contradicts the
prediction of Ulbricht and Hertel [6] and Ulbricht et al [7] that encapsulations through tube
ends are more likely than encapsulations through defect openings on the side wall of carbon
nanotubes. For the suction of C60 fullerenes through the open end of a carbon nanotube,
molecular dynamics studies of Qian et al [8] suggest that (9, 9) and (10, 10) nanotubes will
accept a C60 molecule from rest, but an (8, 8) nanotube will not. Furthermore, from the study
of the energetics and electronic structures of nanopeapods, Okada et al [9] propose that the
smallest radii of nanotubes which can encapsulate a C60 molecule is approximately 6.4 Å. This
result agrees with Hodak and Girifalco [10] who determine that a nanotube with a radius less
than 6.27 Å cannot be filled with C60 molecules, and the continuum model of Cox et al [11]
which predicts that a nanotube with radius smaller than 6.338 Å will not accept C60 fullerenes
by the van der Waals’ suction force alone. After being accepted into the tube, the C60 molecule
is likely to locate itself in a position with an inter-atomic distance away from the tube wall
so that the inter-atomic potential energy is a minimum. In [12], a mathematical expression is
obtained to determine the preferred position of the C60 molecule inside the nanotube. Their
results show that in a (10, 10) nanotube the preferred position of the C60 is on the tube axis,
whereas this position tends to be offset further away from the tube axis as the tube radius
becomes larger. The above results of Hodak and Girifalco [10] and Cox et al [11, 12] confirm
the findings of Okada et al [9] that the incorporation of a C60 molecule into a (10, 10) nanotube
is energetically favourable, whereas this is not the case for (8, 8) and (9, 9) nanotubes due to
large structural deformation of both the tubes and fullerenes.

From Hodak and Girifalco [10], Okada et al [9] and others [2, 13–16], it is confirmed that
the encapsulation energy of the nanopeapods depends only on the tube radius, and that it is
independent of the tube chirality [15]. As shown by Hodak and Girifalco [10, 17], Khlobystov
et al [18], Okada et al [9] and Dubay and Kresse [19], in (10, 10) and (11, 11), the C60

molecules form a quasi one-dimensional system, and the energy is close to a one-dimensional
system of C60 molecules to which the interaction energy with the tube is added. However, a
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phase transition occurs when the tube radius becomes larger, resulting in an increase in the
dimensionality of the C60 fullerenes inside the tube. From a Monte Carlo study, Hodak and
Girifalco [10] report a zigzag structure of C60 molecules inside a (15, 15) nanotube. To obtain
the interaction energy, in a quasi one-dimensional system (e.g. C60 fullerenes in a (10,10) tube),
only three nearest neighbour interactions are taken into account, while in three-dimensional
N molecules, Hodak and Girifalco [10] assume that the potential energy consists of two parts.
These comprise, first, the nearest neighbour interactions between molecules which depend on
the inter-molecular distance measured along the axial direction, and second, the contribution
from the energy that depends on the offset distance of each molecule from the tube central
axis.

In the present paper, we adopt this assumption together with the Lennard–Jones potential
and the continuum approximation to predict the structure of a chain of C60 fullerenes inside
a single-walled carbon nanotube. Our approach provides an explicit analytical result for the
potential energy, which upon minimizing gives rise to the precise structure of the chain. Using
this technique, we determine zigzag and spiral configurations of C60 fullerene chains inside
nanotubes with radii in the range 6.784–13.557 Å. Our results agree with Hodak and Girifalco
[17] who use a simulated annealing method to study the minimum energy configurations of
C60 fullerenes inside carbon nanotubes with radii from 6.27 to 19.68 Å [17]. They predict that
ten different packing arrangements occur for C60 molecules inside nanotubes within this size
range. Each arrangement depends strongly on the size of the tube radius, and as such each
arrangement exists only in certain sizes of carbon nanotubes.

In this paper, we employ the continuum approximation, for which the discrete carbon
atoms are assumed to be replaced by an average atomic distribution over each surface, and
the Lennard–Jones potential function, to determine the potential energy of a nanopeapod,
which is assumed to form either a zigzag or a spiral configuration. The analysis for zigzag
nanopeapods comprising (2k + 1) C60 molecules is then presented in section 3. Furthermore,
the investigation for nanopeapods with a spiral configuration and comprising k C60 molecules
is presented in section 4. For both cases we obtain analytical expressions and we determine
the minimum energy configurations. A concluding summary is presented in section 5. In
appendix A, analytical expressions for the interaction energies between a carbon atom and
a C60 molecule and between two C60 molecules are presented. Finally in appendix B, we
present certain details for the derivation of the total potential energy for the zigzag and the
spiral nanopeapods which are in the form of the hypergeometric functions.

2. Interaction energy

The widely used Lennard–Jones potential (see, for example, [10–12, 20]) is adopted here
to determine the potential energy for a chain of C60 fullerenes inside a single-walled carbon
nanotube. The classical Lennard–Jones potential for a pair of atoms at a distance ρ apart is
given by

E(ρ) = − A

ρ6
+

B

ρ12
, (1)

where A and B are the attractive and the repulsive constants, respectively. Equation (1) can
also be written in the form

E(ρ) = 4ε

[
−

(
σ

ρ

)6

+

(
σ

ρ

)12
]
,

where σ is the van der Waals diameter and the well depth ε = A2/4B. The equilibrium
distance ρ0 is given by ρ0 = 21/6σ = (2B/A)1/6. For carbon–carbon atom interactions, the
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Figure 1. Zigzag configuration for (2k + 1) C60 fullerenes inside a carbon nanotube.

constants A and B are given by A = 19.975 eV Å6 and B = 34.8127 × 103 eV Å12 [21]
and therefore, the equilibrium distance ρ0 for two carbon atoms is ρ0 = 3.893 85 Å. Using
the continuum approximation, which assumes that the discrete atoms may be replaced by a
uniform surface density of atoms over the surface, together with the Lennard–Jones potential,
the total potential energy Etot for two non-bonded molecules can be obtained by performing
double surface integrals; thus

Etot = η1η2

∫ ∫
R

E(ρ) d�1 d�2,

where η1 and η2 denote the mean surface densities of the first and second molecule and ρ is the
distance between two typical surface elements d�1 and d�2. The potential energy of a many-
body system comprising pairs of molecules, which is called the pair potential approximation
[22], is given by

U = 1

2

N∑
i,j=1,i �=j

E(ρij ), (2)

where ρij denotes the distance between a surface element i and a surface element j .
In order to obtain the potential energy for a nanopeapod, we need to consider the potential

energy between two C60 fullerenes and the potential energy between a C60 fullerene and the
carbon nanotube. In appendix A, we summarize these results for the interaction energies for
a C60 fullerene and a carbon atom and for two C60 molecules.

3. Zigzag nanopeapods comprising (2k + 1) C60 molecules

Here we investigate the preferred pattern for a zigzag chain of C60 fullerenes inside a single-
walled carbon nanotube, the so-called nanopeapod, and we determine an interaction energy in
the following manner. We assume a configuration, as shown in figure 1, comprising (2k + 1)

C60 molecules located as indicated and we also assume that the total energy of the system
comprises

(i) (2k + 1) C60 fullerenes each interacting with all the carbon atoms of the carbon nanotube;
(ii) 2(2k − 1) type I interactions, comprising two for each j = 2, 3, . . . , k and i =

2, 3, . . . , k − 1 and one for each of j = 1, k + 1 and i = 1, k; thus 2(k − 1 + k − 2) + 4 =
2(2k − 1);

(iii) 4k type II interactions, comprising two for each j = 2, 3, . . . , k and i = 1, 2, . . . , k and
one for each of j = 1, k + 1; thus 2(k − 1 + k) + 2 = 4k,

where the nearest neighbour interactions of types I and II are as shown in figure 1. We assume
that all other non-nearest neighbour interactions are sufficiently small and as such we neglect
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their contributions to the total energy. We comment that the van der Waals force is a short-
range force so that, for example, for two interacting C60 fullerenes it operates at the van der
Waals diameter of 8.9424 Å, and since the nearest neighbour approximation involves a distance
between fullerene centres of at least 10.0375 Å, only a single nearest neighbour interaction
needs to be considered. We assume that the distance in the z direction between centres of
adjacent molecules is Z. Then the centre of the upper j th C60 molecule (j = 1, 2, . . . , k + 1) is
located at position 2(j − 1)Z, while the centre of the lower ith C60 molecule (i = 1, 2, . . . , k)

is located at position Z + 2(i − 1)Z = (2i − 1)Z.
With reference to a rectangular Cartesian coordinate system (x, y, z), a typical point on

the surface of the tube has the coordinates (b cos θ, b sin θ, z) where b is the radius of the
tube. The length of the tube is assumed to be 2L where L may tend to infinity. Similarly, with
reference to a rectangular Cartesian coordinate system (x, y, z) with the origin located at the
centre of the most left C60 molecule, centres of the upper j th C60 molecules have coordinates
(ε, 0, 2Z(j − 1))(j = 1, 2, . . . , (k + 1)) and centres of the lower ith C60 molecules have
coordinates (−ε, 0, Z(2i − 1))(i = 1, 2, . . . , k), where Z is the distance between centres of
adjacent C60 fullerenes and ε is the offset position from the centre of the tube to the centre of
the C60 fullerene in the x direction, as illustrated in figure 1. Then from (2) the total potential
energy is obtained by

Etot =
k∑

i=1

Ei(ρi) +
k+1∑
j=1

Ej(ρj ) + (2k − 1)E∗∗(d1) + 2kE∗∗(d2),

where d1 and d2 are the distances between the centres of C60 fullerenes as shown in figure 1,
and d2

1 = 4Z2 and d2
2 = 4ε2 + Z2. The potential functions E∗∗(d1) and E∗∗(d2) arise from the

type I and type II interactions between a pair of C60 molecules, respectively, and are defined
by (A.4). The potential functions Ei and Ej represent the energy of a C60 fullerene interacting
with the carbon nanotube which is obtained from

Em = bηg

∫ π

−π

∫ L

−L

E∗(ρm) dz dθ, (m = i, j) (3)

where ηg is the mean atomic surface density for a carbon nanotube and the length L is
subsequently taken to be infinite. The potential function E∗ is defined by (A.1) and ρm (m = i

and j ) are given by

ρ2
i = (b + ε)2 − 4bε sin2(θ/2) + [z − Z(2i − 1)]2,

ρ2
j = (b − ε)2 + 4bε sin2(θ/2) + [z − 2Z(j − 1)]2.

According to equations (A.2), (A.3) and (3), we need to evaluate

Gm =
∫ π

−π

∫ ∞

−∞

1

(ρ2
m − a2)n

dz dθ, (4)

where n is an integer. The details for evaluating (4) are presented in appendix B and we may
deduce

Gm = π2

22n−3(αm + βm)n−1/2

(
2(n − 1)

n − 1

)
F

(
n − 1

2
,

1

2
; 1; 1 − γm

)
,

where F(a, b; c; z) denotes the usual hypergeometric function,
(
x

y

)
represents the usual

binomial coefficient, γm = αm/(αm + βm)(m = iandj), αi = (b + ε)2 − a2, βi = −4bε, αj =
(b − ε)2 − a2 and βj = 4bε.
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Table 1. Values of various constants.

Parameters Values

Radius of C60 (a) 3.55 Å
Radius of (10, 10) (b) 6.784 Å
Radius of (16, 16) (b) 10.846 Å
Radius of (20, 20) (b) 13.557 Å
Attractive constant—C60–C60 (A) 20.0 eV Å6 a

Repulsive constant—C60–C60 (B) 34.8 × 103 eV Å12 a

Attractive constant—C60–graphene (A) 17.4 eV Å6 a

Repulsive constant—C60–graphene (B) 29.0 × 103 eV Å12 a

Mean surface density of C60 (ηf ) 0.3789 Å−2

Mean surface density of carbon nanotube (ηg) 0.3812 Å−2

a Data taken from [20].

Table 2. Equilibrium distance Z (Å), offset location ε (Å) and total potential energy of the system
Etot (eV) for each pair of C60 fullerenes in a zigzag configuration nanopeapod comprising (2k + 1)

C60 molecules.

(10, 10) (16, 16) (20, 20)

k Z ε Etot Z ε Etot Z ε Etot

1 10.0375 0 −6.8099 5.1838 4.2977 2.7516 0 7.0200 2.1063
2 10.0362 0 −13.9535 5.0281 4.3193 6.4709 5.0177 7.0207 4.8644
3 10.0359 0 −21.0971 5.0262 4.3207 −10.1929 5.0179 7.0202 7.6325
4 10.0358 0 −28.2407 5.0255 4.3213 −13.9148 5.0180 7.0200 −10.4006
5 10.0358 0 −35.3843 5.0252 4.3216 −17.6368 5.0180 7.0198 −13.1687

10 10.0356 0 −71.1023 5.0246 4.3223 −36.2468 5.0180 7.0195 −27.0092
15 10.0356 0 −106.8203 5.0245 4.3225 −54.8568 5.0180 7.0194 −40.8498
20 10.0356 0 −142.5384 5.0244 4.3226 −73.4669 5.0180 7.0193 −54.6903
25 10.0356 0 −178.2564 5.0243 4.3227 −92.0769 5.0181 7.0193 −68.5308
50 10.0356 0 −356.8464 5.0243 4.3228 −185.1270 5.0181 7.0192 −137.7335

100 10.0356 0 −714.0267 5.0242 4.3223 −371.2273 5.0181 7.0192 −276.1387

3.1. Numerical solutions for zigzag nanopeapods

By minimizing the total energy of the system we determine the offset location ε from the
centre of the tube to the centre of the C60 fullerene and an equilibrium distance Z between
centres of a pair of C60 molecules for zigzag nanopeapods. The total potential energy consists
of two nearest neighbour interactions of two C60 fullerenes and one interaction between the
C60 fullerene and the carbon nanotube. We examine an infinite length carbon nanotube which
comprises (2k + 1) C60 molecules inside (10, 10), (16, 16) and (20, 20) carbon nanotubes.
Using the algebraic computer package MAPLE together with the parameter values in table 1,
the numerical values for the offset location ε, the equilibrium distance Z and the total potential
energy Etot are as shown in table 2. We note that the global minimum energy location of the
system is first graphed to ensure a genuine global minimum and the optimization package in
MAPLE is then utilized to find the optimum values for each parameter at this location.

In the case of the (10, 10) carbon nanotube, we obtain an offset position ε = 0 which is
equivalent to a distance 3.234 Å from the tube wall to the nearest atom on the C60 molecule
and compares well with Okada et al [9]. The equilibrium distance is shown to be Z =
10.0375 Å for three C60 molecules inside the tube which is in excellent agreement with
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Figure 2. Spiral configuration for k C60 molecules inside a carbon nanotube.

Rochefort [13]. As a result, all C60 fullerenes inside the (10, 10) tube are likely to align and
form a linear chain along the tube axis. The equilibrium distance decreases slightly as the
number of the C60 molecules is increased due to the packing of the molecules. Moreover,
the C60 fullerenes move closer to the wall as the radius of the tube increase. We obtain
the offset positions of ε = 4.30 Å and ε = 7.02 Å and the equilibrium distances of Z =
5.024 Å and Z = 5.018 Å for the (16, 16) and (20, 20) carbon nanotubes, respectively. For
these two cases, the zigzag pattern is more clearly evident along the tube. However, for the
three C60 fullerenes inside the (20, 20) carbon nanotube, the equilibrium distance is Z = 0
which means that although a zigzag pattern exists, all three of the C60 molecules are in the same
plane. This is because there is a sufficient amount of space for the three C60 molecules to align
themselves due to the large circumference of tube. This result is related to the investigation
made by Hodak and Girifalco [17]. Furthermore, upon considering C60 fullerenes inside a
(15, 15) nanotube, our results suggest ε � 3.6 Å and Z � 6.9 Å which agree well with Hodak
and Girifalco [10].

We find that the offset locations for all three nanopeapod configurations in this
investigation are in a very good agreement with Cox et al [11] for a single C60 fullerene inside a
single-walled carbon nanotube. Moreover, we observe that the interaction energy between the
C60 fullerenes has more effect in forming the chain conformation than the interaction energy
between the tube and the C60 fullerene. For example, we obtain an equilibrium distance of
10.036 Å for (10, 10) nanopeapod, which is comparable to the equilibrium distance between
two C60 molecules as determined in appendix A. We further observe that the number of C60

molecules in the system makes only a minor contribution to the alignment of the molecules as
shown in table 2.

4. Spiral nanopeapod comprising k C60 molecules

In this section, a spiral configuration is assumed for k C60 fullerenes, which are located inside
a single-walled carbon nanotube, as shown in figure 2. We minimize the energy of the system
and we determine the angular spacing α, the longitudinal spacing β and the offset location ε

for a spiral pattern. We assume that the total potential energy of the system comprises

(i) k C60 fullerenes each interacting with all the carbon atoms of the carbon nanotube;
(ii) 2(k − 1) type I interactions, comprising two for each i = 2, 3, . . . , k − 1 and one for each

of i = 1 and i = k; thus 2(k − 2) + 2 = 2(k − 1);
(iii) 2(k − 2) type II interactions, comprising two for each i = 3, 4, . . . , k − 2 and one for

each of i = 1, 2 and i = k − 1, k; thus 2(k − 4) + 4 = 2(k − 2);
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(iv) 2(k − 3) type III interactions, comprising two for each i = 4, 5, . . . , k − 3 and one for
each of i = 1, 2, 3 and i = k − 2, k − 1, k; thus 2(k − 6) + 6 = 2(k − 3);

(v) 2(k − 4) type IV interactions, comprising two for each i = 5, 6, . . . , k − 4 and one for
each of i = 1, 2, 3, 4 and i = k − 3, k − 2, k − 1, k; thus 2(k − 8) + 8 = 2(k − 4),

where the four nearest neighbour interactions of types I, II, III and IV are as shown in
figure 2.

With reference to a rectangular Cartesian coordinate system (x, y, z), a typical point
on the surface of the tube has the coordinates (b cos θ, b sin θ, z) where b is the radius
of the tube. The length of the tube is assumed to be 2L, where L may tend to infinity.
Similarly, with reference to a rectangular Cartesian coordinate system (x, y, z) with the origin
located at the centre of the left most C60 molecule, centres of C60 molecules have coordinates
(ε cos αi, ε sin αi, βi)(i = 1, 2, . . . , k), where ε represents the offset location, α and β denote
the angular and the longitudinal spacings for the spiral shape, respectively. We note that α = π

gives rise to the special case of the zigzag pattern. From (2) the total potential energy is given
by

Etot =
k∑

i=1

Ei(ρi) + (k − 1)E∗∗(d1) + (k − 2)E∗∗(d2) + (k − 3)E∗∗(d3) + (k − 4)E∗∗(d4),

where d�(� = 1, 2, 3, 4) are the distances between centres of C60 fullerenes as shown in
figure 2 and

d2
� = 4ε2 sin2(�α/2) + (�β)2. (5)

The potential function E∗∗(d�) represents types I, II, III and IV interactions which are the
potential energies between a pair of C60 fullerenes defined by (A.4). The potential function
Ei (i = 1, 2, . . . , k) represents the energy of a C60 fullerene interacting with the carbon
nanotube which is obtained from (3) where in this case m = i and i = 1, 2, . . . , k. The
function E∗ is defined by (A.1) and ρi (i = 1, 2, . . . , k) is given by

ρ2
i = (b − ε)2 + 4bε sin2[(θ − αi)/2] + (z − βi)2.

We comment that because of the assumed symmetry of the tube, the term αi has no effect for
the integral in (3) so formally we may let αi = 0 and obtain

ρ2
i = (b − ε)2 + 4bε sin2(θ/2) + (z − βi)2.

According to equations (A.2), (A.3) and (3), in the limit as L tends to infinity we need to
evaluate

Hi =
∫ π

−π

∫ ∞

−∞

1

(ρ2
i − a2)n

dz dθ, (6)

where n is an integer. Using precisely the same method as the derivation of (4), it can be
shown that the solution for (6) is again in the form of the hypergeometric function and we may
deduce

Hi = π2

22n−3(αi + βi)n−1/2

(
2(n − 1)

n − 1

)
F

(
n − 1

2
,

1

2
; 1; 1 − γi

)
,

where as before F(a, b; c; z) denotes the usual hypergeometric function,
(
x

y

)
represents the

usual binomial coefficient, αi = (b−ε)2−a2, βi = 4bε and γi = [(b−ε)2−a2]/[(b+ε)2−a2].
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Table 3. Angular spacing α, longitudinal spacing β, offset location ε in Å and total potential
energy of the system Etot (eV) for each pair of C60 fullerenes in a spiral configuration nanopeapod
comprising k C60 molecules.

(10, 10) (16, 16) (20, 20)

k α β ε Etot α β ε Etot α β ε Etot

3 0 10.0366 0 −10.3815 3.1416 5.0329 4.3174 −4.6056 1.3132 5.2127 7.0250 −3.7679
4 0 10.0361 0 −13.9542 3.1416 5.0273 4.3193 −6.4803 1.5842 0.8121 7.0235 −5.5089
5 0 10.0359 0 −17.5269 3.1416 5.0254 4.3202 −8.3551 1.5422 2.4924 7.0012 −6.9939

10 0 10.0355 0 −35.3904 3.1416 5.0230 4.3217 −17.7293 1.5594 2.5018 6.9714 −15.8494
15 0 10.0354 0 −53.2538 3.1416 5.0225 4.3221 −27.1036 1.7191 2.2893 6.9035 −26.3570
20 0 10.0353 0 −71.1173 3.1416 5.0222 4.3223 −36.4779 1.7191 2.2900 6.8997 −35.9950
25 0 10.0353 0 −88.9808 3.1416 5.0221 4.3224 −45.8522 1.7191 2.2905 6.8974 −45.6333
50 0 10.0353 0 −178.2982 3.1416 5.0218 4.3227 −92.7237 1.7191 2.2913 6.8926 −93.8261

100 0 10.0352 0 −356.9329 3.1416 5.0217 4.3228 −186.4668 1.7191 2.2918 6.8902 −190.2130

4.1. Numerical solutions for spiral nanopeapods

The energy minimization technique is employed here to determine the stable configurations
of a spiral chain of C60 fullerenes inside a single-walled carbon nanotube. We consider
nanopeapods comprising k C60 molecules inside infinite (10, 10), (16, 16) and (20, 20) carbon
nanotubes with four possible nearest neighbour interactions for two C60 molecules and one
interaction between the C60 molecule and all the atoms of the carbon nanotube. Again,
using the algebraic computer package MAPLE and the parameter values in table 1, we obtain
numerical values for the angular spacing α, the longitudinal spacing β, the offset location ε

and the total potential energy Etot for such a chain, which are shown in table 3. We note that
β is analogous to the equilibrium distance Z for the zigzag configuration.

For the (10, 10) carbon nanotube, we again obtain the offset location ε = 0. Moreover,
from (5), the angular spacing α has no effect on this configuration, and the longitudinal spacing
β is found to be 10.03 Å. Subsequently, the C60 fullerenes form a linear chain along the tube
axis. These three parameters, α, β and ε, change slightly as the number of C60 fullerenes
in the tube increases. The angular spacing α � π for the (16, 16) tube, which corresponds
to the zigzag configuration, and is close to π/2 for the (20, 20) tube. For k = 100, we
obtain β = 5.0217 Å, ε = 4.3228 Å and β = 2.2918 Å, ε = 6.8902 Å for the (16, 16)

and the (20, 20) tubes, respectively. Consequently, we clearly observe spiral patterns for C60

fullerenes in both the (16, 16) and the (20, 20) nanotubes.
In particular, the zigzag configuration can be thought of as a special case of the spiral

conformation with the angular spacing α = π . We obtain comparable numerical values
for the offset location ε and the longitudinal spacing β for all sizes of the tubes, and an
example is shown for the case of (16, 16) carbon nanotube in table 3. Moreover, in the case
of (20, 20) tube, at least four C60 molecules are required to form a stable spiral configuration.
This observation is related to the findings of Hodak and Girifalco [17] in the sense that four
molecules are required on each layer within the carbon nanotube with radius 13.5–14.05 Å.

5. Summary

The major contribution of this paper is the use of elementary mechanical principles and
classical applied mathematical modelling techniques to formulate explicit analytical criteria
and ideal model behaviour in a nanotechnology area for which previously only experimental
and molecular dynamics simulation were available. Two nonlinear patterns for a C60 fullerene
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chain inside a single-walled carbon nanotube, which are assumed to be zigzag and spiral, are
examined in this paper. We employ the Lennard–Jones potential function and the continuum
approximation to obtain the energy of the system which upon minimizing gives rise to the
stable structure of the system. Double surface integrals are performed to determine the
potential energy which may be expressed in terms of the standard hypergeometric function.
The Lennard–Jones potential energies are evaluated numerically using the algebraic computer
package MAPLE.

In terms of the zigzag configuration, we consider (2k + 1) C60 molecules inside
(10, 10), (16, 16) and (20, 20) single-walled carbon nanotubes. The offset location ε and
the equilibrium distance Z are determined. The total potential energy of the system comprises
the interaction energy between the C60 fullerenes and the tube and the two nearest neighbour
interactions of the C60 molecules. We find that the chain of C60 molecules is formed linearly
along the (10, 10) tube axis and discernible zigzag patterns exist for both the (16, 16) and
(20, 20) tubes. The spiral configuration comprising k C60 molecules is also investigated. We
consider the interaction energy between the C60 fullerenes and the tube and the four nearest
neighbour interactions between the C60 molecules. The angular spacing α, the longitudinal
spacing β and the offset location ε are determined from minimization of the interaction
energies. We also obtain a linear C60 fullerene chain along the (10, 10) tube axis and spiral
patterns for the (16, 16) and (20, 20) tubes. In particular, α = π gives rise to the special case
of the zigzag pattern, and we obtain comparable numerical values for the zigzag configuration
from the spiral configuration by setting α = π .

In general, we observe that the interaction energy between the C60 molecules themselves
dominates the energy of the system. The interaction between the C60 molecules determines the
equilibrium position and the angular spacing of the system, whereas the interaction between
the C60 fullerene and the carbon nanotube determines the offset position of the chain. Further,
in the zigzag configuration, the number of C60 molecules makes a minor contribution to both
the offset location and the equilibrium distance so that the assumption of periodicity made for
the molecular dynamics simulations is quite reasonable. However, the periodicity assumption
may not apply for the spiral configuration since as the radius of the tube increases the system
requires more C60 molecules to maintain stability of the system. Finally, we comment that for
a tube which is finite in length, we expect that the results given here also apply providing that
the two fullerenes located closest to the tube ends are at a distance from the end which is at
least the van der Waals radius 4.4712 Å. If this is not the case, we might expect some small
variation of the numerical values given here, since at the tube ends peak-like forces operate
(see, for example, [12]) which would tend to diminish the distance between fullerene centres.
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Appendix A. Derivation of interaction energies for fullerenes

Here we summarize the derivation of the potential energy between two C60 molecules. To
start we review the calculation of the interaction energy between a carbon atom and a C60
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Figure A1. Atom interacting with C60 fullerene.

fullerene, utilizing the Lennard–Jones potential function and the continuum approximation.
Subsequently, the potential energy between the two C60 fullerenes is obtained by performing
another surface integral of a spherical fullerene.

The derivation of the potential energy between a carbon atom and a C60 fullerene was
first given by Mahanty and Ninham [23] and Ruoff and Hickman [24] and then later adopted
by Cox et al [11]. As shown in figure A1, with the carbon atom located outside the spherical
fullerene, the distance between the atom and a typical atom on the C60 fullerene ρ is given by
ρ2 = a2 + r2

1 − 2ar1 cos φ, where a is a radius of a C60 fullerene. The potential energy for a
carbon atom interacting with the spherical fullerene is obtained by E∗ = −Q6 + Q12, where
Qn (n = 6, 12) are defined by

Qn = Cnηf

∫
�

1

ρn
d�,

where ρ denotes the distance from a carbon atom to a typical surface element of the spherical
molecule d�. The constants C6 and C12 are the Lennard–Jones potential constants A and B,
respectively, and ηf represents the atomic surface density of a C60 fullerene. Therefore, the
interaction energy between the carbon atom and the C60 fullerene is given by

E∗(r1) = πaηf

r1

[
A

2

(
1

(r1 + a)4
− 1

(r1 − a)4

)
− B

5

(
1

(r1 + a)10
− 1

(r1 − a)10

)]
. (A.1)

Following the work of Cox et al [11], we place the fractions over common denominators,
expand and reduce to fractions in terms of powers of

(
r2

1 − a2
)
, and then it can be shown that

A

2r1

(
1

(r1 + a)4
− 1

(r1 − a)4

)
= −4aA

(
1(

r2
1 − a2

)3 +
2a2(

r2
1 − a2

)4

)
, (A.2)

and

B

5r1

(
1

(r1 + a)10
− 1

(r1 − a)10

)
= −4aB

5

(
5(

r2
1 − a2

)6 +
80a2(

r2
1 − a2

)7

+
336a4(

r2
1 − a2

)8 +
512a6(

r2
1 − a2

)9 +
256a8(

r2
1 − a2

)10

)
. (A.3)

For full details of the derivation of (A.1), we refer the reader to [11].
To determine the interaction between two spherical fullerenes, with their centres at a

distance r apart, we need to perform a surface integral of (A.1) over another spherical fullerene,
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Figure A2. Two interacting C60 fullerenes.

which has the parametric equation (x1, y1, z1) = (a sin θ1 cos φ1, a sin θ1 sin φ1, a cos θ1).
Here the distance r1, as illustrated in figure A2, is given by r2

1 = a2 + r2 − 2ar cos φ1. Thus,
the potential energy between two spherical fullerenes is obtained from E∗∗ = −P6 + P12,
where Pn (n = 6, 12) are defined by

Pn = ηf

∫ 2π

0

∫ π

0
Qna

2 sin φ1 dφ1 dθ1.

By using appropriate substitutions and integrations, we may deduce

Pn = 4π2a2Cnη
2
f

r(2 − n)(3 − n)

(
1

(2a + r)n−3
+

1

rn−3
− 1

(2a − r)n−3
− 1

(−r)n−3

)
, (A.4)

for which n even simplifies to yield

Pn = 4π2a2Cnη
2
f

r(2 − n)(3 − n)

(
1

(2a + r)n−3
− 1

(2a − r)n−3
+

2

rn−3

)
,

a formula which is also given in [21]. Using the constant values given in table 1, we find that
the equilibrium distance for two C60 fullerenes is given by r0 = 10.0375 Å.

Appendix B. Evaluation of the integral (4)

The integral (4) is evaluated here. On letting λ2
i = (b + ε)2 − 4bε sin2(θ/2) − a2 and

λ2
j = (b − ε)2 + 4bε sin2(θ/2) − a2, we obtain

Gm =
∫ −π

π

∫ L

−L

1[
λ2

m + (z + Zm)2
]n dz dθ (m = i, j),

where Zi = Z(2i − 1)(i = 1, 2, . . . , k) and Zj = 2Z(j − 1)(j = 1, 2, . . . , k + 1). Upon
making the substitution xm = z + Zm, we may deduce

Gm =
∫ −π

π

∫ Zm+L

Zm−L

1(
λ2

m + x2
m

)n dxm dθ =
∫ π

−π

∫ π/2

−π/2

λm sec2 ψ

λ2n
m sec2n ψ

dψ dθ,

where the final line is obtained by substituting xm = λm tan ψ and letting L tend to infinity.
Finally, we have

Gm = 1

λ
2p+1
m

∫ π

−π

∫ π/2

−π/2
cos2p ψ dψ dθ, (B.1)

where p = n − 1. The solution for (B.1) can be found in [25] (p. 149, no 2.513, 3) for which
we may deduce∫

cos2p ψ dψ = 1

22p

[(
2p

p

)
ψ +

p−1∑
�=0

(
2p

�

)
sin[2(p − �)ψ]

p − �

]
, (B.2)
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where
(
x

y

)
is the usual binomial coefficients. By evaluating (B.2) at ψ = π/2 and ψ = −π/2

and using the fact that sin 2x = 2 sin x cos x, we may deduce

Gm = π

22p

(
2p

p

)∫ π

−π

1

λ
2p+1
m

dθ = 4π

22p

(
2p

p

)∫ π/2

0

1

λ
2p+1
m

dx,

where x = θ/2 and then λ2
i = (b + ε)2 − 4bε sin2 x − a2 and λ2

j = (b − ε)2 + 4bε sin2 x − a2.
First, we consider

Jm =
∫ π/2

0

dx

(αm + βm sin2 x)p+1/2
,

where αi = (b + ε)2 − a2, αj = (b − ε)2 − a2, βi = −4bε and βj = 4bε. Making the
substitution t = cot x and letting γm = αm/(αm + βm), we obtain

Jm =
∫ ∞

0

(1 + t2)p−1/2

[αm(1 + t2) + βm]p+1/2
dt

= 1

(αm + βm)p+1/2

∫ ∞

0

(1 + t2)p−1/2

(1 − γmt2)p+1/2
dt.

Now on writing the integral in the form

Jm = 1

(αm + βm)p+1/2

∫ ∞

0

(1 + t2)−1 dt

[1 − (1 − γm)t2/(1 + t2)]p+1/2
,

we are led to make the substitution z = t/
√

1 + t2 and following we make the further
substitution u = z2, so that

Jm = 1

2(αm + βm)p+1/2

∫ 1

0

u−1/2(1 − u)−1/2

[1 − (1 − γm)u]p+1/2
du.

From [25] (p. 995, no 9.111) we may deduce

Jm = π

2(α + βm)p+1/2
F

(
p +

1

2
,

1

2
; 1; 1 − γm

)
,

where F(a, b; c;Z) denotes a hypergeometric function. Finally, we obtain

Gm = π2

22n−3(αm + βm)n−1/2

(
2(n − 1)

n − 1

)
F

(
n − 1

2
,

1

2
; 1; 1 − γm

)
.
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Corrigendum

Zigzag and spiral configurations for fullerenes in carbon nanotubes
D Baowan, N Thamwattana and J M Hill 2007 J. Phys. A: Math. Theor. 40 7543–7556

There is a minor error in equation (A.4) and in the equation following (A.4). The correct form
of (A.4) reads,

Pn = 4π2a2Cnη
2
f

r(2 − n)(3 − n)

(
1

(2a + r)n−3
+

1

(−r)n−3
− 1

(2a − r)n−3
− 1

rn−3

)
, (A.4)

and for n even the correct simplification of this equation becomes

Pn = 4π2a2Cnη
2
f

r(2 − n)(3 − n)

(
1

(2a + r)n−3
− 1

(2a − r)n−3
− 2

rn−3

)
.

This change has a small effect on numerical values presented in the original tables 2 and 3.
The corrected revised tables 2 and 3 are given below. The authors are grateful to Dr. Barry
Cox for pointing out this error.

Table 2. Equilibrium distance Z (Å), offset location ε (Å) and total potential energy of the system
Etot (eV) for each pair of C60 fullerenes in a zigzag configuration nanopeapod comprising (2k + 1) C60

molecules.

k (10,10) (16,16) (20,20)

Z ε Etot Z ε Etot Z ε Etot

1 10.0550 0 -6.7632 5.2176 4.2977 -2.7048 0 7.0213 -2.0941
2 10.0543 0 -13.8074 5.0390 4.3216 -6.2354 5.0267 7.0220 -4.7420
3 10.0542 0 -20.8516 5.0366 4.3232 -9.7692 5.0269 7.0217 -7.3973
4 10.0542 0 -27.8958 5.0358 4.3239 -13.3031 5.0269 7.0215 -10.0526
5 10.0541 0 -34.9400 5.0354 4.3244 -16.8370 5.0269 7.0214 -12.7079
10 10.0541 0 -70.1612 5.0347 4.3251 -34.5067 5.0270 7.0212 -25.9845
15 10.0540 0 -105.3823 5.0345 4.3255 -52.1764 5.0270 7.0211 -39.2611
20 10.0540 0 -140.6034 5.0344 4.3255 -69.8460 5.0270 7.0211 -52.5377
25 10.0540 0 -175.8245 5.0344 4.3256 -87.5157 5.0270 7.0210 -65.8143
50 10.0540 0 -351.9301 5.0343 4.3257 -175.8641 5.0270 7.0210 -132.1973

100 10.0540 0 -704.1413 5.0342 4.3258 -352.5610 5.0270 7.0210 -274.9634

1751-8113/08/299801+02$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1
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